Limits of End-to-End Learning

26 Apr 2017  ·  Tobias Glasmachers ·

End-to-end learning refers to training a possibly complex learning system by applying gradient-based learning to the system as a whole. End-to-end learning system is specifically designed so that all modules are differentiable. In effect, not only a central learning machine, but also all "peripheral" modules like representation learning and memory formation are covered by a holistic learning process. The power of end-to-end learning has been demonstrated on many tasks, like playing a whole array of Atari video games with a single architecture. While pushing for solutions to more challenging tasks, network architectures keep growing more and more complex. In this paper we ask the question whether and to what extent end-to-end learning is a future-proof technique in the sense of scaling to complex and diverse data processing architectures. We point out potential inefficiencies, and we argue in particular that end-to-end learning does not make optimal use of the modular design of present neural networks. Our surprisingly simple experiments demonstrate these inefficiencies, up to the complete breakdown of learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here