Light-field view synthesis using convolutional block attention module

3 Dec 2020  ·  M. Shahzeb Khan Gul, Umair Mukati, Michel Bätz, Søren Forchhammer, Joachim Keinert ·

Consumer light-field (LF) cameras suffer from a low or limited resolution because of the angular-spatial trade-off. To alleviate this drawback, we propose a novel learning-based approach utilizing attention mechanism to synthesize novel views of a light-field image using a sparse set of input views (i.e., 4 corner views) from a camera array. In the proposed method, we divide the process into three stages, stereo-feature extraction, disparity estimation, and final image refinement. We use three sequential convolutional neural networks for each stage. A residual convolutional block attention module (CBAM) is employed for final adaptive image refinement. Attention modules are helpful in learning and focusing more on the important features of the image and are thus sequentially applied in the channel and spatial dimensions. Experimental results show the robustness of the proposed method. Our proposed network outperforms the state-of-the-art learning-based light-field view synthesis methods on two challenging real-world datasets by 0.5 dB on average. Furthermore, we provide an ablation study to substantiate our findings.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here