Lens Parameter Estimation for Realistic Depth of Field Modeling

We present a method to estimate the depth of field effect from a single image. Most existing methods related to this task provide either a per-pixel estimation of blur and/or depth. Instead, we go further and propose to use a lens-based representation that models the depth of field using two parameters: the blur factor and focus disparity. Those two parameters, along with the signed defocus representation, result in a more intuitive and linear representation which we solve using a novel weighting network. Furthermore, our method explicitly enforces consistency between the estimated defocus blur, the lens parameters, and the depth map. Finally, we train our deep-learning-based model on a mix of real images with synthetic depth of field and fully synthetic images. These improvements result in a more robust and accurate method, as demonstrated by our state-of-the-art results. In particular, our lens parametrization enables several applications, such as 3D staging for AR environments and seamless object compositing.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here