Learning When to See for Long-term Traffic Data Collection on Power-constrained Devices

25 Jan 2024  ·  Ruixuan Zhang, Wenyu Han, Zilin Bian, Kaan Ozbay, Chen Feng ·

Collecting traffic data is crucial for transportation systems and urban planning, and is often more desirable through easy-to-deploy but power-constrained devices, due to the unavailability or high cost of power and network infrastructure. The limited power means an inevitable trade-off between data collection duration and accuracy/resolution. We introduce a novel learning-based framework that strategically decides observation timings for battery-powered devices and reconstructs the full data stream from sparsely sampled observations, resulting in minimal performance loss and a significantly prolonged system lifetime. Our framework comprises a predictor, a controller, and an estimator. The predictor utilizes historical data to forecast future trends within a fixed time horizon. The controller uses the forecasts to determine the next optimal timing for data collection. Finally, the estimator reconstructs the complete data profile from the sampled observations. We evaluate the performance of the proposed method on PeMS data by an RNN (Recurrent Neural Network) predictor and estimator, and a DRQN (Deep Recurrent Q-Network) controller, and compare it against the baseline that uses Kalman filter and uniform sampling. The results indicate that our method outperforms the baseline, primarily due to the inclusion of more representative data points in the profile, resulting in an overall 10\% improvement in estimation accuracy. Source code will be publicly available.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here