Visual question answering (VQA) requires joint comprehension of images and natural language questions, where many questions can't be directly or clearly answered from visual content but require reasoning from structured human knowledge with confirmation from visual content. This paper proposes visual knowledge memory network (VKMN) to address this issue, which seamlessly incorporates structured human knowledge and deep visual features into memory networks in an end-to-end learning framework... (read more)
PDFMETHOD | TYPE | |
---|---|---|
![]() |
Working Memory Models |