Learning Tube-Certified Control Using Robust Contraction Metrics

14 Sep 2023  ·  Vivek Sharma, Pan Zhao, Naira Hovakimyan ·

Control design for general nonlinear robotic systems with guaranteed stability and/or safety in the presence of model uncertainties is a challenging problem. Recent efforts attempt to learn a controller and a certificate (e.g., a Lyapunov function or a contraction metric) jointly using neural networks (NNs), in which model uncertainties are generally ignored during the learning process. In this paper, for nonlinear systems subject to bounded disturbances, we present a framework for jointly learning a robust nonlinear controller and a contraction metric using a novel disturbance rejection objective that certifies a universal $\mathcal L_\infty$ gain bound using NNs for user-specified variables. The learned controller aims to minimize the effect of disturbances on the actual trajectories of state and/or input variables from their nominal counterparts while providing certificate tubes around nominal trajectories that are guaranteed to contain actual trajectories in the presence of disturbances. Experimental results demonstrate that our framework can generate tighter tubes and a controller that is computationally efficient to implement.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here