Learning to search for and detect objects in foveal images using deep learning

12 Apr 2023  ·  Beatriz Paula, Plinio Moreno ·

The human visual system processes images with varied degrees of resolution, with the fovea, a small portion of the retina, capturing the highest acuity region, which gradually declines toward the field of view's periphery. However, the majority of existing object localization methods rely on images acquired by image sensors with space-invariant resolution, ignoring biological attention mechanisms. As a region of interest pooling, this study employs a fixation prediction model that emulates human objective-guided attention of searching for a given class in an image. The foveated pictures at each fixation point are then classified to determine whether the target is present or absent in the scene. Throughout this two-stage pipeline method, we investigate the varying results obtained by utilizing high-level or panoptic features and provide a ground-truth label function for fixation sequences that is smoother, considering in a better way the spatial structure of the problem. Finally, we present a novel dual task model capable of performing fixation prediction and detection simultaneously, allowing knowledge transfer between the two tasks. We conclude that, due to the complementary nature of both tasks, the training process benefited from the sharing of knowledge, resulting in an improvement in performance when compared to the previous approach's baseline scores.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here