Learning to Predict on Octree for Scalable Point Cloud Geometry Coding

6 Sep 2022  ·  Yixiang Mao, Yueyu Hu, Yao Wang ·

Octree-based point cloud representation and compression have been adopted by the MPEG G-PCC standard. However, it only uses handcrafted methods to predict the probability that a leaf node is non-empty, which is then used for entropy coding. We propose a novel approach for predicting such probabilities for geometry coding, which applies a denoising neural network to a "noisy" context cube that includes both neighboring decoded voxels as well as uncoded voxels. We further propose a convolution-based model to upsample the decoded point cloud at a coarse resolution on the decoder side. Integration of the two approaches significantly improves the rate-distortion performance for geometry coding compared to the original G-PCC standard and other baseline methods for dense point clouds. The proposed octree-based entropy coding approach is naturally scalable, which is desirable for dynamic rate adaptation in point cloud streaming systems.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here