Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs

13 May 2019  ·  Lingbing Guo, Zequn Sun, Wei Hu ·

We study the problem of knowledge graph (KG) embedding. A widely-established assumption to this problem is that similar entities are likely to have similar relational roles. However, existing related methods derive KG embeddings mainly based on triple-level learning, which lack the capability of capturing long-term relational dependencies of entities. Moreover, triple-level learning is insufficient for the propagation of semantic information among entities, especially for the case of cross-KG embedding. In this paper, we propose recurrent skipping networks (RSNs), which employ a skipping mechanism to bridge the gaps between entities. RSNs integrate recurrent neural networks (RNNs) with residual learning to efficiently capture the long-term relational dependencies within and between KGs. We design an end-to-end framework to support RSNs on different tasks. Our experimental results showed that RSNs outperformed state-of-the-art embedding-based methods for entity alignment and achieved competitive performance for KG completion.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here