Learning to Compress Unmanned Aerial Vehicle (UAV) Captured Video: Benchmark and Analysis

15 Jan 2023  ·  Chuanmin Jia, Feng Ye, Huifang Sun, Siwei Ma, Wen Gao ·

During the past decade, the Unmanned-Aerial-Vehicles (UAVs) have attracted increasing attention due to their flexible, extensive, and dynamic space-sensing capabilities. The volume of video captured by UAVs is exponentially growing along with the increased bitrate generated by the advancement of the sensors mounted on UAVs, bringing new challenges for on-device UAV storage and air-ground data transmission. Most existing video compression schemes were designed for natural scenes without consideration of specific texture and view characteristics of UAV videos. In this work, we first contribute a detailed analysis of the current state of the field of UAV video coding. Then we propose to establish a novel task for learned UAV video coding and construct a comprehensive and systematic benchmark for such a task, present a thorough review of high quality UAV video datasets and benchmarks, and contribute extensive rate-distortion efficiency comparison of learned and conventional codecs after. Finally, we discuss the challenges of encoding UAV videos. It is expected that the benchmark will accelerate the research and development in video coding on drone platforms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here