Learning to Combat Compounding-Error in Model-Based Reinforcement Learning

24 Dec 2019  ·  Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, Martin Müller ·

Despite its potential to improve sample complexity versus model-free approaches, model-based reinforcement learning can fail catastrophically if the model is inaccurate. An algorithm should ideally be able to trust an imperfect model over a reasonably long planning horizon, and only rely on model-free updates when the model errors get infeasibly large. In this paper, we investigate techniques for choosing the planning horizon on a state-dependent basis, where a state's planning horizon is determined by the maximum cumulative model error around that state. We demonstrate that these state-dependent model errors can be learned with Temporal Difference methods, based on a novel approach of temporally decomposing the cumulative model errors. Experimental results show that the proposed method can successfully adapt the planning horizon to account for state-dependent model accuracy, significantly improving the efficiency of policy learning compared to model-based and model-free baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here