Learning Space Partitions for Nearest Neighbor Search

Space partitions of $\mathbb{R}^d$ underlie a vast and important class of fast nearest neighbor search (NNS) algorithms. Inspired by recent theoretical work on NNS for general metric spaces [Andoni, Naor, Nikolov, Razenshteyn, Waingarten STOC 2018, FOCS 2018], we develop a new framework for building space partitions reducing the problem to balanced graph partitioning followed by supervised classification. We instantiate this general approach with the KaHIP graph partitioner [Sanders, Schulz SEA 2013] and neural networks, respectively, to obtain a new partitioning procedure called Neural Locality-Sensitive Hashing (Neural LSH). On several standard benchmarks for NNS, our experiments show that the partitions obtained by Neural LSH consistently outperform partitions found by quantization-based and tree-based methods as well as classic, data-oblivious LSH.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here