Learning Sparse Nonparametric DAGs

29 Sep 2019  ·  Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing ·

We develop a framework for learning sparse nonparametric directed acyclic graphs (DAGs) from data. Our approach is based on a recent algebraic characterization of DAGs that led to a fully continuous program for score-based learning of DAG models parametrized by a linear structural equation model (SEM). We extend this algebraic characterization to nonparametric SEM by leveraging nonparametric sparsity based on partial derivatives, resulting in a continuous optimization problem that can be applied to a variety of nonparametric and semiparametric models including GLMs, additive noise models, and index models as special cases. Unlike existing approaches that require specific modeling choices, loss functions, or algorithms, we present a completely general framework that can be applied to general nonlinear models (e.g. without additive noise), general differentiable loss functions, and generic black-box optimization routines. The code is available at https://github.com/xunzheng/notears.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here