Learning Schizophrenia Imaging Genetics Data Via Multiple Kernel Canonical Correlation Analysis

15 Sep 2016  ·  Owen Richfield, Md. Ashad Alam, Vince Calhoun, Yu-Ping Wang ·

Kernel and Multiple Kernel Canonical Correlation Analysis (CCA) are employed to classify schizophrenic and healthy patients based on their SNPs, DNA Methylation and fMRI data. Kernel and Multiple Kernel CCA are popular methods for finding nonlinear correlations between high-dimensional datasets. Data was gathered from 183 patients, 79 with schizophrenia and 104 healthy controls. Kernel and Multiple Kernel CCA represent new avenues for studying schizophrenia, because, to our knowledge, these methods have not been used on these data before. Classification is performed via k-means clustering on the kernel matrix outputs of the Kernel and Multiple Kernel CCA algorithm. Accuracies of the Kernel and Multiple Kernel CCA classification are compared to that of the regularized linear CCA algorithm classification, and are found to be significantly more accurate. Both algorithms demonstrate maximal accuracies when the combination of DNA methylation and fMRI data are used, and experience lower accuracies when the SNP data are incorporated.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods