Learning Quantum Entanglement Distillation with Noisy Classical Communications

17 May 2022  ·  Hari Hara Suthan Chittoor, Osvaldo Simeone ·

Quantum networking relies on the management and exploitation of entanglement. Practical sources of entangled qubits are imperfect, producing mixed quantum state with reduced fidelity with respect to ideal Bell pairs. Therefore, an important primitive for quantum networking is entanglement distillation, whose goal is to enhance the fidelity of entangled qubits through local operations and classical communication (LOCC). Existing distillation protocols assume the availability of ideal, noiseless, communication channels. In this paper, we study the case in which communication takes place over noisy binary symmetric channels. We propose to implement local processing through parameterized quantum circuits (PQCs) that are optimized to maximize the average fidelity, while accounting for communication errors. The introduced approach, Noise Aware-LOCCNet (NA-LOCCNet), is shown to have significant advantages over existing protocols designed for noiseless communications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here