Learning Physical Concepts in Cyber-Physical Systems: A Case Study

28 Nov 2021  ·  Henrik S. Steude, Alexander Windmann, Oliver Niggemann ·

Machine Learning (ML) has achieved great successes in recent decades, both in research and in practice. In Cyber-Physical Systems (CPS), ML can for example be used to optimize systems, to detect anomalies or to identify root causes of system failures. However, existing algorithms suffer from two major drawbacks: (i) They are hard to interpret by human experts. (ii) Transferring results from one systems to another (similar) system is often a challenge. Concept learning, or Representation Learning (RepL), is a solution to both of these drawbacks; mimicking the human solution approach to explain-ability and transfer-ability: By learning general concepts such as physical quantities or system states, the model becomes interpretable by humans. Furthermore concepts on this abstract level can normally be applied to a wide range of different systems. Modern ML methods are already widely used in CPS, but concept learning and transfer learning are hardly used so far. In this paper, we provide an overview of the current state of research regarding methods for learning physical concepts in time series data, which is the primary form of sensor data of CPS. We also analyze the most important methods from the current state of the art using the example of a three-tank system. Based on these concrete implementations1, we discuss the advantages and disadvantages of the methods and show for which purpose and under which conditions they can be used.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here