Learning not to Regret

The literature on game-theoretic equilibrium finding predominantly focuses on single games or their repeated play. Nevertheless, numerous real-world scenarios feature playing a game sampled from a distribution of similar, but not identical games, such as playing poker with different public cards or trading correlated assets on the stock market. As these similar games feature similar equilibra, we investigate a way to accelerate equilibrium finding on such a distribution. We present a novel "learning not to regret" framework, enabling us to meta-learn a regret minimizer tailored to a specific distribution. Our key contribution, Neural Predictive Regret Matching, is uniquely meta-learned to converge rapidly for the chosen distribution of games, while having regret minimization guarantees on any game. We validated our algorithms' faster convergence on a distribution of river poker games. Our experiments show that the meta-learned algorithms outpace their non-meta-learned counterparts, achieving more than tenfold improvements.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here