Learning Nonlinear Couplings in Network of Agents from a Single Sample Trajectory

20 Nov 2022  ·  Arash Amini, Qiyu Sun, Nader Motee ·

We consider a class of stochastic dynamical networks whose governing dynamics can be modeled using a coupling function. It is shown that the dynamics of such networks can generate geometrically ergodic trajectories under some reasonable assumptions. We show that a general class of coupling functions can be learned using only one sample trajectory from the network. This is practically plausible as in numerous applications it is desired to run an experiment only once but for a longer period of time, rather than repeating the same experiment multiple times from different initial conditions. Building upon ideas from the concentration inequalities for geometrically ergodic Markov chains, we formulate several results about the convergence of the empirical estimator to the true coupling function. Our theoretical findings are supported by extensive simulation results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here