Learning Neural Random Fields with Inclusive Auxiliary Generators

27 Sep 2018  ·  Yunfu Song, Zhijian Ou ·

Neural random fields (NRFs), which are defined by using neural networks to implement potential functions in undirected models, provide an interesting family of model spaces for machine learning. In this paper we develop a new approach to learning NRFs with inclusive-divergence minimized auxiliary generator - the inclusive-NRF approach, for continuous data (e.g. images), with solid theoretical examination on exploiting gradient information in model sampling. We show that inclusive-NRFs can be flexibly used in unsupervised/supervised image generation and semi-supervised classification, and empirically to the best of our knowledge, represent the best-performed random fields in these tasks. Particularly, inclusive-NRFs achieve state-of-the-art sample generation quality on CIFAR-10 in both unsupervised and supervised settings. Semi-supervised inclusive-NRFs show strong classification results on par with state-of-the-art generative model based semi-supervised learning methods, and simultaneously achieve superior generation, on the widely benchmarked datasets - MNIST, SVHN and CIFAR-10.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here