Learning Modulated Loss for Rotated Object Detection

19 Nov 2019  ·  Wen Qian, Xue Yang, Silong Peng, Yue Guo, Junchi Yan ·

Popular rotated detection methods usually use five parameters (coordinates of the central point, width, height, and rotation angle) to describe the rotated bounding box and l1-loss as the loss function. In this paper, we argue that the aforementioned integration can cause training instability and performance degeneration, due to the loss discontinuity resulted from the inherent periodicity of angles and the associated sudden exchange of width and height. This problem is further pronounced given the regression inconsistency among five parameters with different measurement units. We refer to the above issues as rotation sensitivity error (RSE) and propose a modulated rotation loss to dismiss the loss discontinuity. Our new loss is combined with the eight-parameter regression to further solve the problem of inconsistent parameter regression. Experiments show the state-of-art performances of our method on the public aerial image benchmark DOTA and UCAS-AOD. Its generalization abilities are also verified on ICDAR2015, HRSC2016, and FDDB. Qualitative improvements can be seen in Fig 1, and the source code will be released with the publication of the paper.

PDF Abstract

Datasets


Results from the Paper


Ranked #43 on Object Detection In Aerial Images on DOTA (using extra training data)

     Get a GitHub badge
Task Dataset Model Metric Name Metric Value Global Rank Uses Extra
Training Data
Result Benchmark
Object Detection In Aerial Images DOTA RSDet mAP 74.10% # 43

Methods


No methods listed for this paper. Add relevant methods here