Learning Mixtures of Permutations: Groups of Pairwise Comparisons and Combinatorial Method of Moments

14 Sep 2020  ·  Cheng Mao, Yihong Wu ·

In applications such as rank aggregation, mixture models for permutations are frequently used when the population exhibits heterogeneity. In this work, we study the widely used Mallows mixture model. In the high-dimensional setting, we propose a polynomial-time algorithm that learns a Mallows mixture of permutations on $n$ elements with the optimal sample complexity that is proportional to $\log n$, improving upon previous results that scale polynomially with $n$. In the high-noise regime, we characterize the optimal dependency of the sample complexity on the noise parameter. Both objectives are accomplished by first studying demixing permutations under a noiseless query model using groups of pairwise comparisons, which can be viewed as moments of the mixing distribution, and then extending these results to the noisy Mallows model by simulating the noiseless oracle.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here