Learning Low-dimensional Latent Dynamics from High-dimensional Observations: Non-asymptotics and Lower Bounds

9 May 2024  ·  Yuyang Zhang, Shahriar Talebi, Na Li ·

In this paper, we focus on learning a linear time-invariant (LTI) model with low-dimensional latent variables but high-dimensional observations. We provide an algorithm that recovers the high-dimensional features, i.e. column space of the observer, embeds the data into low dimensions and learns the low-dimensional model parameters. Our algorithm enjoys a sample complexity guarantee of order $\tilde{\mathcal{O}}(n/\epsilon^2)$, where $n$ is the observation dimension. We further establish a fundamental lower bound indicating this complexity bound is optimal up to logarithmic factors and dimension-independent constants. We show that this inevitable linear factor of $n$ is due to the learning error of the observer's column space in the presence of high-dimensional noise. Extending our results, we consider a meta-learning problem inspired by various real-world applications, where the observer column space can be collectively learned from datasets of multiple LTI systems. An end-to-end algorithm is then proposed, facilitating learning LTI systems from a meta-dataset which breaks the sample complexity lower bound in certain scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods