Learning Light Field Angular Super-Resolution via a Geometry-Aware Network

26 Feb 2020  ·  Jing Jin, Junhui Hou, Hui Yuan, Sam Kwong ·

The acquisition of light field images with high angular resolution is costly. Although many methods have been proposed to improve the angular resolution of a sparsely-sampled light field, they always focus on the light field with a small baseline, which is captured by a consumer light field camera. By making full use of the intrinsic \textit{geometry} information of light fields, in this paper we propose an end-to-end learning-based approach aiming at angularly super-resolving a sparsely-sampled light field with a large baseline. Our model consists of two learnable modules and a physically-based module. Specifically, it includes a depth estimation module for explicitly modeling the scene geometry, a physically-based warping for novel views synthesis, and a light field blending module specifically designed for light field reconstruction. Moreover, we introduce a novel loss function to promote the preservation of the light field parallax structure. Experimental results over various light field datasets including large baseline light field images demonstrate the significant superiority of our method when compared with state-of-the-art ones, i.e., our method improves the PSNR of the second best method up to 2 dB in average, while saves the execution time 48$\times$. In addition, our method preserves the light field parallax structure better.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here