Learning Kernels for Structured Prediction using Polynomial Kernel Transformations

7 Jan 2016  ·  Chetan Tonde, Ahmed Elgammal ·

Learning the kernel functions used in kernel methods has been a vastly explored area in machine learning. It is now widely accepted that to obtain 'good' performance, learning a kernel function is the key challenge. In this work we focus on learning kernel representations for structured regression. We propose use of polynomials expansion of kernels, referred to as Schoenberg transforms and Gegenbaur transforms, which arise from the seminal result of Schoenberg (1938). These kernels can be thought of as polynomial combination of input features in a high dimensional reproducing kernel Hilbert space (RKHS). We learn kernels over input and output for structured data, such that, dependency between kernel features is maximized. We use Hilbert-Schmidt Independence Criterion (HSIC) to measure this. We also give an efficient, matrix decomposition-based algorithm to learn these kernel transformations, and demonstrate state-of-the-art results on several real-world datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here