Tight query complexity bounds for learning graph partitions

15 Dec 2021  ·  Xizhi Liu, Sayan Mukherjee ·

Given a partition of a graph into connected components, the membership oracle asserts whether any two vertices of the graph lie in the same component or not. We prove that for $n\ge k\ge 2$, learning the components of an $n$-vertex hidden graph with $k$ components requires at least $(k-1)n-\binom k2$ membership queries. Our result improves on the best known information-theoretic bound of $\Omega(n\log k)$ queries, and exactly matches the query complexity of the algorithm introduced by [Reyzin and Srivastava, 2007] for this problem. Additionally, we introduce an oracle, with access to which one can learn the number of components of $G$ in asymptotically fewer queries than learning the full partition, thus answering another question posed by the same authors. Lastly, we introduce a more applicable version of this oracle, and prove asymptotically tight bounds of $\widetilde\Theta(m)$ queries for both learning and verifying an $m$-edge hidden graph $G$ using it.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here