Learning from Small Sample Sets by Combining Unsupervised Meta-Training with CNNs

NeurIPS 2016  ·  Yu-Xiong Wang, Martial Hebert ·

This work explores CNNs for the recognition of novel categories from few examples. Inspired by the transferability properties of CNNs, we introduce an additional unsupervised meta-training stage that exposes multiple top layer units to a large amount of unlabeled real-world images. By encouraging these units to learn diverse sets of low-density separators across the unlabeled data, we capture a more generic, richer description of the visual world, which decouples these units from ties to a specific set of categories. We propose an unsupervised margin maximization that jointly estimates compact high-density regions and infers low-density separators. The low-density separator (LDS) modules can be plugged into any or all of the top layers of a standard CNN architecture. The resulting CNNs significantly improve the performance in scene classification, fine-grained recognition, and action recognition with small training samples.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here