Learning Differentiable Safety-Critical Control using Control Barrier Functions for Generalization to Novel Environments

4 Jan 2022  ·  Hengbo Ma, Bike Zhang, Masayoshi Tomizuka, Koushil Sreenath ·

Control barrier functions (CBFs) have become a popular tool to enforce safety of a control system. CBFs are commonly utilized in a quadratic program formulation (CBF-QP) as safety-critical constraints. A class $\mathcal{K}$ function in CBFs usually needs to be tuned manually in order to balance the trade-off between performance and safety for each environment. However, this process is often heuristic and can become intractable for high relative-degree systems. Moreover, it prevents the CBF-QP from generalizing to different environments in the real world. By embedding the optimization procedure of the exponential control barrier function based quadratic program (ECBF-QP) as a differentiable layer within a deep learning architecture, we propose a differentiable safety-critical control framework that enables generalization to new environments for high relative-degree systems with forward invariance guarantees. Finally, we validate the proposed control design with 2D double and quadruple integrator systems in various environments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here