Learning Cyclic Causal Models from Incomplete Data

23 Feb 2024  ·  Muralikrishnna G. Sethuraman, Faramarz Fekri ·

Causal learning is a fundamental problem in statistics and science, offering insights into predicting the effects of unseen treatments on a system. Despite recent advances in this topic, most existing causal discovery algorithms operate under two key assumptions: (i) the underlying graph is acyclic, and (ii) the available data is complete. These assumptions can be problematic as many real-world systems contain feedback loops (e.g., biological systems), and practical scenarios frequently involve missing data. In this work, we propose a novel framework, named MissNODAGS, for learning cyclic causal graphs from partially missing data. Under the additive noise model, MissNODAGS learns the causal graph by alternating between imputing the missing data and maximizing the expected log-likelihood of the visible part of the data in each training step, following the principles of the expectation-maximization (EM) framework. Through synthetic experiments and real-world single-cell perturbation data, we demonstrate improved performance when compared to using state-of-the-art imputation techniques followed by causal learning on partially missing interventional data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here