Learning Connectivity with Graph Convolutional Networks for Skeleton-based Action Recognition

6 Dec 2021  ·  Hichem Sahbi ·

Learning graph convolutional networks (GCNs) is an emerging field which aims at generalizing convolutional operations to arbitrary non-regular domains. In particular, GCNs operating on spatial domains show superior performances compared to spectral ones, however their success is highly dependent on how the topology of input graphs is defined. In this paper, we introduce a novel framework for graph convolutional networks that learns the topological properties of graphs. The design principle of our method is based on the optimization of a constrained objective function which learns not only the usual convolutional parameters in GCNs but also a transformation basis that conveys the most relevant topological relationships in these graphs. Experiments conducted on the challenging task of skeleton-based action recognition shows the superiority of the proposed method compared to handcrafted graph design as well as the related work.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here