Learning-based Symbolic Abstractions for Nonlinear Control Systems

Symbolic models or abstractions are known to be powerful tools for the control design of cyber-physical systems (CPSs) with logic specifications. In this paper, we investigate a novel learning-based approach to the construction of symbolic models for nonlinear control systems. In particular, the symbolic model is constructed based on learning the un-modeled part of the dynamics from training data based on state-space exploration, and the concept of an alternating simulation relation that represents behavioral relationships with respect to the original control system. Moreover, we aim at achieving safe exploration, meaning that the trajectory of the system is guaranteed to be in a safe region for all times while collecting the training data. In addition, we provide some techniques to reduce the computational load, in terms of memory and computation time, of constructing the symbolic models and the safety controller synthesis, so as to make our approach practical. Finally, a numerical simulation illustrates the effectiveness of the proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here