Learning and Generalization in Univariate Overparameterized Normalizing Flows

1 Jan 2021  ·  Kulin Shah, Amit Deshpande, Navin Goyal ·

In supervised learning, it is known that overparameterized neural networks with one hidden layer provably and efficiently learn and generalize, when trained using Stochastic Gradient Descent (SGD). In contrast, the benefit of overparameterization in unsupervised learning is not well understood. Normalizing flows (NFs) learn to map complex real-world distributions into simple base distributions, and constitute an important class of models in unsupervised learning for sampling and density estimation. In this paper, we theoretically and empirically analyze these models when the underlying neural network is one hidden layer overparametrized network. On the one hand we provide evidence that for a class of NFs, overparametrization hurts training. On the other, we prove that another class of NFs, with similar underlying networks can efficiently learn any reasonable data distribution under minimal assumptions. We extend theoretical ideas on learning and generalization from overparameterized neural networks in supervised learning to overparameterized normalizing flows in unsupervised learning. We also provide experimental validation to support our theoretical analysis in practice.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods