Learning an arbitrary mixture of two multinomial logits

1 Jul 2020  ·  Wenpin Tang ·

In this paper, we consider mixtures of multinomial logistic models (MNL), which are known to $\epsilon$-approximate any random utility model. Despite its long history and broad use, rigorous results are only available for learning a uniform mixture of two MNLs. Continuing this line of research, we study the problem of learning an arbitrary mixture of two MNLs. We show that the identifiability of the mixture models may only fail on an algebraic variety of a negligible measure. This is done by reducing the problem of learning a mixture of two MNLs to the problem of solving a system of univariate quartic equations. We also devise an algorithm to learn any mixture of two MNLs using a polynomial number of samples and a linear number of queries, provided that a mixture of two MNLs over some finite universe is identifiable. Several numerical experiments and conjectures are also presented.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here