Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition

We consider the task of learning in episodic finite-horizon Markov decision processes with an unknown transition function, bandit feedback, and adversarial losses. We propose an efficient algorithm that achieves O(√L|X|AT ) regret with high probability, where L is the horizon, |X| the number of states, |A| the number of actions, and T the number of episodes. To our knowledge, our algorithm is the first to ensure O(√T) regret in this challenging setting; in fact, it achieves the same regret as (Rosenberg & Mansour, 2019a) who consider the easier setting with full-information. Our key contributions are two-fold: a tighter confidence set for the transition function; and an optimistic loss estimator that is inversely weighted by an "upper occupancy bound".

PDF ICML 2020 PDF
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here