Robust and flexible learning of a high-dimensional classification rule using auxiliary outcomes

11 Nov 2020  ·  Muxuan Liang, Jaeyoung Park, Qing Lu, Xiang Zhong ·

Correlated outcomes are common in many practical problems. In some settings, one outcome is of particular interest, and others are auxiliary. To leverage information shared by all the outcomes, traditional multi-task learning (MTL) minimizes an averaged loss function over all the outcomes, which may lead to biased estimation for the target outcome, especially when the MTL model is mis-specified. In this work, based on a decomposition of estimation bias into two types, within-subspace and against-subspace, we develop a robust transfer learning approach to estimating a high-dimensional linear decision rule for the outcome of interest with the presence of auxiliary outcomes. The proposed method includes an MTL step using all outcomes to gain efficiency, and a subsequent calibration step using only the outcome of interest to correct both types of biases. We show that the final estimator can achieve a lower estimation error than the one using only the single outcome of interest. Simulations and real data analysis are conducted to justify the superiority of the proposed method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here