Learnable Topological Features for Phylogenetic Inference via Graph Neural Networks

17 Feb 2023  ·  Cheng Zhang ·

Structural information of phylogenetic tree topologies plays an important role in phylogenetic inference. However, finding appropriate topological structures for specific phylogenetic inference tasks often requires significant design effort and domain expertise. In this paper, we propose a novel structural representation method for phylogenetic inference based on learnable topological features. By combining the raw node features that minimize the Dirichlet energy with modern graph representation learning techniques, our learnable topological features can provide efficient structural information of phylogenetic trees that automatically adapts to different downstream tasks without requiring domain expertise. We demonstrate the effectiveness and efficiency of our method on a simulated data tree probability estimation task and a benchmark of challenging real data variational Bayesian phylogenetic inference problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here