Large Batch and Patch Size Training for Medical Image Segmentation

24 Oct 2022  ·  Junya Sato, Shoji Kido ·

Multi-organ segmentation enables organ evaluation, accounts the relationship between multiple organs, and facilitates accurate diagnosis and treatment decisions. However, only few models can perform segmentation accurately because of the lack of datasets and computational resources. On AMOS2022 challenge, which is a large-scale, clinical, and diverse abdominal multiorgan segmentation benchmark, we trained a 3D-UNet model with large batch and patch sizes using multi-GPU distributed training. Segmentation performance tended to increase for models with large batch and patch sizes compared with the baseline settings. The accuracy was further improved by using ensemble models that were trained with different settings. These results provide a reference for parameter selection in organ segmentation.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here