Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching

8 Oct 2023  ·  Hao Zhang, Lumin Xu, Shenqi Lai, Wenqi Shao, Nanning Zheng, Ping Luo, Yu Qiao, Kaipeng Zhang ·

Current image-based keypoint detection methods for animal (including human) bodies and faces are generally divided into full-supervised and few-shot class-agnostic approaches. The former typically relies on laborious and time-consuming manual annotations, posing considerable challenges in expanding keypoint detection to a broader range of keypoint categories and animal species. The latter, though less dependent on extensive manual input, still requires necessary support images with annotation for reference during testing. To realize zero-shot keypoint detection without any prior annotation, we introduce the Open-Vocabulary Keypoint Detection (OVKD) task, which is innovatively designed to use text prompts for identifying arbitrary keypoints across any species. In pursuit of this goal, we have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM). This framework synergistically combines vision and language models, creating an interplay between language features and local keypoint visual features. KDSM enhances its capabilities by integrating Domain Distribution Matrix Matching (DDMM) and other special modules, such as the Vision-Keypoint Relational Awareness (VKRA) module, improving the framework's generalizability and overall performance.Our comprehensive experiments demonstrate that KDSM significantly outperforms the baseline in terms of performance and achieves remarkable success in the OVKD task.Impressively, our method, operating in a zero-shot fashion, still yields results comparable to state-of-the-art few-shot species class-agnostic keypoint detection methods.We will make the source code publicly accessible.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here