Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation

20 Jun 2022  ·  Loucas Pillaud-Vivien, Julien Reygner, Nicolas Flammarion ·

Understanding the implicit bias of training algorithms is of crucial importance in order to explain the success of overparametrised neural networks. In this paper, we study the role of the label noise in the training dynamics of a quadratically parametrised model through its continuous time version. We explicitly characterise the solution chosen by the stochastic flow and prove that it implicitly solves a Lasso program. To fully complete our analysis, we provide nonasymptotic convergence guarantees for the dynamics as well as conditions for support recovery. We also give experimental results which support our theoretical claims. Our findings highlight the fact that structured noise can induce better generalisation and help explain the greater performances of stochastic dynamics as observed in practice.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here