Label Noise: Correcting a Correction

24 Jul 2023  ·  William Toner, Amos Storkey ·

Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels. To address this issue, researchers have explored alternative loss functions that aim to be more robust. However, many of these alternatives are heuristic in nature and still vulnerable to overfitting or underfitting. In this work, we propose a more direct approach to tackling overfitting caused by label noise. We observe that the presence of label noise implies a lower bound on the noisy generalised risk. Building upon this observation, we propose imposing a lower bound on the empirical risk during training to mitigate overfitting. Our main contribution is providing theoretical results that yield explicit, easily computable bounds on the minimum achievable noisy risk for different loss functions. We empirically demonstrate that using these bounds significantly enhances robustness in various settings, with virtually no additional computational cost.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here