L-HYDRA: Multi-Head Physics-Informed Neural Networks

5 Jan 2023  ·  Zongren Zou, George Em Karniadakis ·

We introduce multi-head neural networks (MH-NNs) to physics-informed machine learning, which is a type of neural networks (NNs) with all nonlinear hidden layers as the body and multiple linear output layers as multi-head. Hence, we construct multi-head physics-informed neural networks (MH-PINNs) as a potent tool for multi-task learning (MTL), generative modeling, and few-shot learning for diverse problems in scientific machine learning (SciML). MH-PINNs connect multiple functions/tasks via a shared body as the basis functions as well as a shared distribution for the head. The former is accomplished by solving multiple tasks with MH-PINNs with each head independently corresponding to each task, while the latter by employing normalizing flows (NFs) for density estimate and generative modeling. To this end, our method is a two-stage method, and both stages can be tackled with standard deep learning tools of NNs, enabling easy implementation in practice. MH-PINNs can be used for various purposes, such as approximating stochastic processes, solving multiple tasks synergistically, providing informative prior knowledge for downstream few-shot learning tasks such as meta-learning and transfer learning, learning representative basis functions, and uncertainty quantification. We demonstrate the effectiveness of MH-PINNs in five benchmarks, investigating also the possibility of synergistic learning in regression analysis. We name the open-source code "Lernaean Hydra" (L-HYDRA), since this mythical creature possessed many heads for performing important multiple tasks, as in the proposed method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods