Kullback-Leibler Proximal Variational Inference

We propose a new variational inference method based on the Kullback-Leibler (KL) proximal term. We make two contributions towards improving efficiency of variational inference. Firstly, we derive a KL proximal-point algorithm and show its equivalence to gradient descent with natural gradient in stochastic variational inference. Secondly, we use the proximal framework to derive efficient variational algorithms for non-conjugate models. We propose a splitting procedure to separate non-conjugate terms from conjugate ones. We then linearize the non-conjugate terms and show that the resulting subproblem admits a closed-form solution. Overall, our approach converts a non-conjugate model to subproblems that involve inference in well-known conjugate models. We apply our method to many models and derive generalizations for non-conjugate exponential family. Applications to real-world datasets show that our proposed algorithms are easy to implement, fast to converge, perform well, and reduce computations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here