Krylov Methods are (nearly) Optimal for Low-Rank Approximation

6 Apr 2023  ·  Ainesh Bakshi, Shyam Narayanan ·

We consider the problem of rank-$1$ low-rank approximation (LRA) in the matrix-vector product model under various Schatten norms: $$ \min_{\|u\|_2=1} \|A (I - u u^\top)\|_{\mathcal{S}_p} , $$ where $\|M\|_{\mathcal{S}_p}$ denotes the $\ell_p$ norm of the singular values of $M$. Given $\varepsilon>0$, our goal is to output a unit vector $v$ such that $$ \|A(I - vv^\top)\|_{\mathcal{S}_p} \leq (1+\varepsilon) \min_{\|u\|_2=1}\|A(I - u u^\top)\|_{\mathcal{S}_p}. $$ Our main result shows that Krylov methods (nearly) achieve the information-theoretically optimal number of matrix-vector products for Spectral ($p=\infty$), Frobenius ($p=2$) and Nuclear ($p=1$) LRA. In particular, for Spectral LRA, we show that any algorithm requires $\Omega\left(\log(n)/\varepsilon^{1/2}\right)$ matrix-vector products, exactly matching the upper bound obtained by Krylov methods [MM15, BCW22]. Our lower bound addresses Open Question 1 in [Woo14], providing evidence for the lack of progress on algorithms for Spectral LRA and resolves Open Question 1.2 in [BCW22]. Next, we show that for any fixed constant $p$, i.e. $1\leq p =O(1)$, there is an upper bound of $O\left(\log(1/\varepsilon)/\varepsilon^{1/3}\right)$ matrix-vector products, implying that the complexity does not grow as a function of input size. This improves the $O\left(\log(n/\varepsilon)/\varepsilon^{1/3}\right)$ bound recently obtained in [BCW22], and matches their $\Omega\left(1/\varepsilon^{1/3}\right)$ lower bound, to a $\log(1/\varepsilon)$ factor.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here