Knowledge Distillation Under Ideal Joint Classifier Assumption

19 Apr 2023  ·  Huayu Li, Xiwen Chen, Gregory Ditzler, Janet Roveda, Ao Li ·

Knowledge distillation constitutes a potent methodology for condensing substantial neural networks into more compact and efficient counterparts. Within this context, softmax regression representation learning serves as a widely embraced approach, leveraging a pre-established teacher network to guide the learning process of a diminutive student network. Notably, despite the extensive inquiry into the efficacy of softmax regression representation learning, the intricate underpinnings governing the knowledge transfer mechanism remain inadequately elucidated. This study introduces the 'Ideal Joint Classifier Knowledge Distillation' (IJCKD) framework, an overarching paradigm that not only furnishes a lucid and exhaustive comprehension of prevailing knowledge distillation techniques but also establishes a theoretical underpinning for prospective investigations. Employing mathematical methodologies derived from domain adaptation theory, this investigation conducts a comprehensive examination of the error boundary of the student network contingent upon the teacher network. Consequently, our framework facilitates efficient knowledge transference between teacher and student networks, thereby accommodating a diverse spectrum of applications.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods