Knowledge Cores in Large Formal Contexts

26 Feb 2020  ·  Tom Hanika, Johannes Hirth ·

Knowledge computation tasks are often infeasible for large data sets. This is in particular true when deriving knowledge bases in formal concept analysis (FCA). Hence, it is essential to come up with techniques to cope with this problem. Many successful methods are based on random processes to reduce the size of the investigated data set. This, however, makes them hardly interpretable with respect to the discovered knowledge. Other approaches restrict themselves to highly supported subsets and omit rare and interesting patterns. An essentially different approach is used in network science, called $k$-cores. These are able to reflect rare patterns if they are well connected in the data set. In this work, we study $k$-cores in the realm of FCA by exploiting the natural correspondence to bi-partite graphs. This structurally motivated approach leads to a comprehensible extraction of knowledge cores from large formal contexts data sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here