Knowledge-Aware Neuron Interpretation for Scene Classification

29 Jan 2024  ·  Yong Guan, Freddy Lecue, Jiaoyan Chen, Ru Li, Jeff Z. Pan ·

Although neural models have achieved remarkable performance, they still encounter doubts due to the intransparency. To this end, model prediction explanation is attracting more and more attentions. However, current methods rarely incorporate external knowledge and still suffer from three limitations: (1) Neglecting concept completeness. Merely selecting concepts may not sufficient for prediction. (2) Lacking concept fusion. Failure to merge semantically-equivalent concepts. (3) Difficult in manipulating model behavior. Lack of verification for explanation on original model. To address these issues, we propose a novel knowledge-aware neuron interpretation framework to explain model predictions for image scene classification. Specifically, for concept completeness, we present core concepts of a scene based on knowledge graph, ConceptNet, to gauge the completeness of concepts. Our method, incorporating complete concepts, effectively provides better prediction explanations compared to baselines. Furthermore, for concept fusion, we introduce a knowledge graph-based method known as Concept Filtering, which produces over 23% point gain on neuron behaviors for neuron interpretation. At last, we propose Model Manipulation, which aims to study whether the core concepts based on ConceptNet could be employed to manipulate model behavior. The results show that core concepts can effectively improve the performance of original model by over 26%.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here