Kernel of CycleGAN as a Principle homogeneous space

24 Jan 2020 Nikita Moriakov Jonas Adler Jonas Teuwen

Unpaired image-to-image translation has attracted significant interest due to the invention of CycleGAN, a method which utilizes a combination of adversarial and cycle consistency losses to avoid the need for paired data. It is known that the CycleGAN problem might admit multiple solutions, and our goal in this paper is to analyze the space of exact solutions and to give perturbation bounds for approximate solutions... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Batch Normalization
Normalization
Residual Connection
Skip Connections
PatchGAN
Discriminators
ReLU
Activation Functions
Tanh Activation
Activation Functions
Residual Block
Skip Connection Blocks
Instance Normalization
Normalization
Convolution
Convolutions
Leaky ReLU
Activation Functions
Sigmoid Activation
Activation Functions
GAN Least Squares Loss
Loss Functions
Cycle Consistency Loss
Loss Functions
CycleGAN
Generative Models