Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments

18 Dec 2020  ·  Rahul Singh ·

Negative control is a strategy for learning the causal relationship between treatment and outcome in the presence of unmeasured confounding. The treatment effect can nonetheless be identified if two auxiliary variables are available: a negative control treatment (which has no effect on the actual outcome), and a negative control outcome (which is not affected by the actual treatment). These auxiliary variables can also be viewed as proxies for a traditional set of control variables, and they bear resemblance to instrumental variables. I propose a family of algorithms based on kernel ridge regression for learning nonparametric treatment effects with negative controls. Examples include dose response curves, dose response curves with distribution shift, and heterogeneous treatment effects. Data may be discrete or continuous, and low, high, or infinite dimensional. I prove uniform consistency and provide finite sample rates of convergence. I estimate the dose response curve of cigarette smoking on infant birth weight adjusting for unobserved confounding due to household income, using a data set of singleton births in the state of Pennsylvania between 1989 and 1991.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here