Kernel-based Impulse Response Identification with Side-Information on Steady-State Gain

31 Oct 2021  ·  Mohammad Khosravi, Roy S. Smith ·

In this paper, we consider the problem of system identification when side-information is available on the steady-state (or DC) gain of the system. We formulate a general nonparametric identification method as an infinite-dimensional constrained convex program over the reproducing kernel Hilbert space (RKHS) of stable impulse responses. The objective function of this optimization problem is the empirical loss regularized with the norm of RKHS, and the constraint is considered for enforcing the integration of the steady-state gain side-information. The proposed formulation addresses both the discrete-time and continuous-time cases. We show that this program has a unique solution obtained by solving an equivalent finite-dimensional convex optimization. This solution has a closed-form when the empirical loss and regularization functions are quadratic and exact side-information is considered. We perform extensive numerical comparisons to verify the efficiency of the proposed identification methodology.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here