Joint Waveform and Filter Designs for STAP-SLP-based MIMO-DFRC Systems

16 Dec 2021  ·  R. Liu, M. Li, Q. Liu, A. L. Swindlehurst ·

Dual-function radar-communication (DFRC), which can simultaneously perform both radar and communication functionalities using the same hardware platform, spectral resource and transmit waveform, is a promising technique for realizing integrated sensing and communication (ISAC). Spacetime adaptive processing (STAP) in multi-antenna radar systems is the primary tool for detecting moving targets in the presence of strong clutter. The idea of joint spatial-temporal optimization in STAP-based radar systems is consistent with the concept of symbol-level precoding (SLP) for multi-input multi-output (MIMO) communications, which optimizes the transmit waveform for each of the transmitted symbols. In this paper, we combine STAP and SLP and propose a novel STAP-SLP-based DFRC system that enjoys the advantages of both techniques. The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraint and various waveform constraints including constant-modulus, similarity and peak-to-average power ratio (PAPR). An efficient algorithm framework based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve these complicated non-convex optimization problems. Simulation results verify the effectiveness of the proposed STAP-SLP-based MIMO-DRFC scheme and the associate algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here