Joint User Activity and Data Detection in Grant-Free NOMA using Generative Neural Networks

7 Jan 2021  ·  Yixuan Zou, Zhijin Qin, Yuanwei Liu ·

Grant-free non-orthogonal multiple access (NOMA) is considered as one of the supporting technology for massive connectivity for future networks. In the grant-free NOMA systems with a massive number of users, user activity detection is of great importance. Existing multi-user detection (MUD) techniques rely on complicated update steps which may cause latency in signal detection. In this paper, we propose a generative neural network-based MUD (GenMUD) framework to utilize low-complexity neural networks, which are trained to reconstruct signals in a small fixed number of steps. By exploiting the uncorrelated user behaviours, we design a network architecture to achieve higher recovery accuracy with a low computational cost. Experimental results show significant performance gains in detection accuracy compared to conventional solutions under different channel conditions and user sparsity levels. We also provide a sparsity estimator through extensive experiments. Simulation results of the sparsity estimator showed high estimation accuracy, strong robustness to channel variations and neglectable impact on support detection accuracy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here